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Symposium Focus

Zooplankton.....
Pivotal role in ecosystems and biogeochemical cycles
Community dynamics structure ecosystem
Target for commercial harvesting
Influenced by climate change
Role in global ecosystem

Focus on zooplankton in Southern Ocean food
webs and incorporation into modeling
frameworks



Presentation Outline

Southern Ocean food webs

Consider food webs from South Georgia, west
Antarctic Peninsula, and Ross Sea

Environmental changes and implications for
food webs

Projections of future changes

Modeling strategies to assess changes in food
webs
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What is a Southern Ocean Food Web?

Antarctic Food Web
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Scales of spatial variation

Scale of aggregation depends
on view of system

ay 0

Each scale requires a
different model and/or approach




Structure modifies the operation of the ecosystem

Scale of aggregations - exploited by different predators

Krill are important to different parts of the food web because of a spatial
structure that covers many scales
Longevity and overwinter survival allows spatial and temporal transfer
Makes energy available to predators



Modeling Southern Ocean Food Webs

Predator models
(e.g. seasonality of upper
trophic level demand - shifts in
predator population size &
distribution)

Food Web Model

Physical
models .
Size based
Geographical
setting and models
physical Set limits on
constraints— general food
advection of web and trophic
biological level structure
material at
boundaries

Biogeochemical

models
Constrains production
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South Georgia Food Web
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12% from Antarctic krill to upper trophic levels

Hill et al. (2012)




South Georgia Food Web
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13% from copepods to upper trophic level — different suite of organisms supported




Food Web Southern west Antarctic Peninsula

Krill dependent Non-Krill dependent
predators predators
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Two size fractions — large and small Ballerini et al. 2013
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ctophids
Krill amtphipo(/

copepods

Scotia

higher predators >

primary producers
(diatoms, flagellates
and ice algae)

3

Adapted from Murphy et al. (2007)

Food Web
simple pathways
embedded in more
complex network

Modeling Strategy

resolve food webs

and individual key
species (Krill)

Understand
causes of change,
key processes, and

consequences



West Antarctic Peninsula
Ongoing Changes

Synthesis of ~20 years of
summer data
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Percentage change in annual production
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Different apportioning of large and small phytoplankton



Capacity for Change

Projected Changes

Scenarios

high
ice

cold

high macro- and
micronutrients (incl. iron)

strong influence of polar
waters on lower latitudes

warm

low macro- and/or
micronutrients (incl. iron)

weak influence of polar
waters on lower latitudes ?

reduced stabilisation
associated with reduced
freshwater and increased
winds?

large diatoms

small autotrophs

high seasonal low production
production
krill copepods small
hee zooplankton
salps
high energy complex
flow through interactions and
krill energy flows
large predators small predators
high abundance of low abundance of
largest predators largest predators
potentially potentially low
high fishing fishing
intensity intensity and
and yield yield
A
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ecosystem transitions  murphy etal.

low
ice

Loss of ice
habitat —
restricted to
areas further
south

Disruption of ice
dependent life
cycles

Impacts on
seasonality.
Disruption of
phenology and
generation mis-
matches in
interaction
timings

Enhanced
poleward
distribution of
warmer water
species

(2013)



Mixed Layer
Depth

Latitude (°S)

Shift to phytoplankton assemblage dominated by diatoms
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General food web structure stays same Changes across contrasting habitats
Species exit/replaced Reorganization of food webs
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Complexity of Responses

Local/regional nature of responses,
mechanisms & changes

Direct/indirect impacts
lce, show
Food webs — prey
Fishing - mortalities

Physiological/Life histories
Flexibility
Sea-ice, timing , seasonality- phenology
-> Population reductions/increases

Interaction effects

Competition, predator-prey, food web
structure



Circumpolar Distributions
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State of Understanding
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Southern Ocean Food Webs
Management Strategy Evaluation

Physical

models

Geographical
setting and
physical
constraints—
advection of
biological
material at
boundaries
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Predator models Geopo litical
(e.g. seasonality of upper
trophic level demand - shifts in G overnance
predator population size & . .
distribution) Socioeconomic
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Approaches & Challenges

Retrospective analyses
Past harvesting effects

Scenario Development
Projections of change

Challenges - Food webs
Neglected trophic links
Linking to key species

Challenges — beyond food webs
Inclusion of new data/technology
Links to new science sectors
Human impacts & needs
Impact & attribution
Adaptation pathways

Management Strategy Evaluation
Network of models
Strategy for combining models and identifying transfers between models



Final Remarks

Circulation models
High-resolution regional and circumpolar models with skill
Implement and compare
Mechanistic understanding
Incorporate into food web and biogeochemical models
Projections
Input to climate models so that useful for biological studies
Develop community-based scenarios (ICED)
Comparative studies
Expand analyses
Use model structures that can be compared across systems

Combine in larger context to consider questions of the
central role of zooplankton in a changing ocean
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